
最近有看到這影片,覺得很有趣
生命遊戲:另一種計算機 |混亂博物館
規則:
If a cell is ON and has fewer than two neighbors that are ON, it turns OFF
(生命害怕孤獨: 鄰居少於2個則死亡)
If a cell is ON and has either two or three neighbors that are ON, it remains ON.
(生命持續: 鄰居為2-3個生命. 保持原樣)
If a cell is ON and has more than three neighbors that are ON, it turns OFF.
(生命討厭擁擠: 鄰居多於3個.則死亡)
If a cell is OFF and has exactly three neighbors that are ON, it turns ON.
(生命繁殖: 目前死亡.鄰居有3個生命則有生命)
然後找看看,發現有程式碼可以玩看看:
Conway’s Game Of Life (Python Implementation)
# Python code to implement Conway's Game Of Life import argparse import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation # setting up the values for the grid ON = 255 OFF = 0 vals = [ON, OFF] def randomGrid(N): """returns a grid of NxN random values""" return np.random.choice(vals, N*N, p=[0.2, 0.8]).reshape(N, N) def addGlider(i, j, grid): """adds a glider with top left cell at (i, j)""" glider = np.array([[0, 0, 255], [255, 0, 255], [0, 255, 255]]) grid[i:i+3, j:j+3] = glider def addGosperGliderGun(i, j, grid): """adds a Gosper Glider Gun with top left cell at (i, j)""" gun = np.zeros(11*38).reshape(11, 38) gun[5][1] = gun[5][2] = 255 gun[6][1] = gun[6][2] = 255 gun[3][13] = gun[3][14] = 255 gun[4][12] = gun[4][16] = 255 gun[5][11] = gun[5][17] = 255 gun[6][11] = gun[6][15] = gun[6][17] = gun[6][18] = 255 gun[7][11] = gun[7][17] = 255 gun[8][12] = gun[8][16] = 255 gun[9][13] = gun[9][14] = 255 gun[1][25] = 255 gun[2][23] = gun[2][25] = 255 gun[3][21] = gun[3][22] = 255 gun[4][21] = gun[4][22] = 255 gun[5][21] = gun[5][22] = 255 gun[6][23] = gun[6][25] = 255 gun[7][25] = 255 gun[3][35] = gun[3][36] = 255 gun[4][35] = gun[4][36] = 255 grid[i:i+11, j:j+38] = gun def update(frameNum, img, grid, N): # copy grid since we require 8 neighbors # for calculation and we go line by line newGrid = grid.copy() for i in range(N): for j in range(N): # compute 8-neghbor sum # using toroidal boundary conditions - x and y wrap around # so that the simulaton takes place on a toroidal surface. total = int((grid[i, (j-1)%N] + grid[i, (j+1)%N] + grid[(i-1)%N, j] + grid[(i+1)%N, j] + grid[(i-1)%N, (j-1)%N] + grid[(i-1)%N, (j+1)%N] + grid[(i+1)%N, (j-1)%N] + grid[(i+1)%N, (j+1)%N])/255) # apply Conway's rules if grid[i, j] == ON: if (total < 2) or (total > 3): newGrid[i, j] = OFF else: if total == 3: newGrid[i, j] = ON # update data img.set_data(newGrid) grid[:] = newGrid[:] return img, # main() function def main(): # Command line args are in sys.argv[1], sys.argv[2] .. # sys.argv[0] is the script name itself and can be ignored # parse arguments parser = argparse.ArgumentParser(description="Runs Conway's Game of Life simulation.") # add arguments parser.add_argument('--grid-size', dest='N', required=False) parser.add_argument('--mov-file', dest='movfile', required=False) parser.add_argument('--interval', dest='interval', required=False) parser.add_argument('--glider', action='store_true', required=False) parser.add_argument('--gosper', action='store_true', required=False) args = parser.parse_args() # set grid size N = 100 if args.N and int(args.N) > 8: N = int(args.N) # set animation update interval updateInterval = 50 if args.interval: updateInterval = int(args.interval) # declare grid grid = np.array([]) # check if "glider" demo flag is specified if args.glider: grid = np.zeros(N*N).reshape(N, N) addGlider(1, 1, grid) elif args.gosper: grid = np.zeros(N*N).reshape(N, N) addGosperGliderGun(10, 10, grid) else: # populate grid with random on/off - # more off than on grid = randomGrid(N) # set up animation fig, ax = plt.subplots() img = ax.imshow(grid, interpolation='nearest') ani = animation.FuncAnimation(fig, update, fargs=(img, grid, N, ), frames = 10, interval=updateInterval, save_count=50) # # of frames? # set output file if args.movfile: ani.save(args.movfile, fps=30, extra_args=['-vcodec', 'libx264']) plt.show() # call main if __name__ == '__main__': main()
實際運作
相當特別~
當然實際生命的運行遠比這個複雜多了

留言板
歡迎留下建議與分享!希望一起交流!感恩!